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t Department of Physics, Nanjing University, Nanjing, People’s Republic of China 
i Department of Physics, Engineer Institute of Engineer Corps, CPLA, Nanjing, People’s 
Republic of China 

Received 4 November 1982 

Abstract. In the space of f-partic!e product states, the Casimir invariants of the graded 
unitary group S U ( m / n )  are functions of the class operators of the graded coordinate 
permutation group s(f), which are equal to the class operators of the graded state 
permutation group 9(f). Formulae for the quadratic and cubic Casimir invariants are 
given. It is shown that in general the eigenvalue formulae for the U ( m / n )  Casimir invariants 
as functions of the partition can be obtained from those for U(m + n )  by simply changing 
the argument of the functions from ( m  + n )  to ( m  - n ) .  The quasi-standard basis of g(f)  
is identified with the Gel’fand basis of SU(m/n) ,  i.e. the irreducible basis classified 
according to the group chain SU(m/n)  2 SU(m/n - 1) 3 .  . . SU(m)  3 .  . . SU(2) 3 U(1). 
The special Gel’fand basis of SU(m/n)  (for which the weight is restricted to (1, 1 , .  . . , 1)) 
can be easily obtained from the Gel’fand basis of SU(m i n )  with due allowances for 
modifying sign factors arising from the grading. The construction of a general S U ( m / n )  
Gel’fand basis is also discussed. 

1. Introduction 

The graded unitary group SU(m/n) is of interest both in particle physics (Ne’eman 
1979, Dondi and Jarvis 1979, 1980, Taylor 1979), where an internal superalgebra is 
introduced as a gauge symmetry, and in nuclear physics (Iachello 1980, Balantekin 
et a1 1981a, b, Sun and Han 1982a, b), where SU(6/4) is used as a supersymmetry 
group in nuclei. Several examples of the SU(6/4) supersymmetry in nuclei have been 
found (Iachello 1980, 1982). 

The group S U ( m / n )  has been studied by Dondi and Jarvis (1981), Han et a1 
(1981), Sun and Han (1981, 1982a, b), and Balantekin and Bars (1981a, b). However, 
up to now these studies mainly concentrated on the irreducible representations (irreps), 
characters, Kronecker product reductions and branching rules. The other important 
issues such as the Clebsch-Gordan coefficients and isoscalar factors have not yet been 
touched upon. As we know, the problem of evaluating the Clebsch-Gordan coefficients 
and various kinds of isoscalar factors of the ordinary unitary group can be conveniently 
tackled from the permutation group representation theory (Chen et a1 1978a, b, Chen 
1981). The appealing feature of this approach is that the results obtained are indepen- 
dent of the rank of the particular group under consideration. In a series of papers, 
the present being the first, we will extend this approach to the graded unitary group 
and show that the relation between the unitary group and the permutation group is 
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exactly the same as that between the graded unitary group and the graded permutation 
group. A brief account of the subject has been published (Chen et a1 1983). 

In § 2 we prove that the Casimir operators of SU(m/n) are functions of the class 
operators of the graded permutation group. The graded state permutation group P(f) 
is introduced in § 3 ,  and the quasi-standard basis of p ( f )  is identified with the SU(m/n)  
Gel’fand basis in § 4. Finally in § 5 we discuss the construction of the Gel’fand basis 
of SU(m/n).  

In this paper we only treat the so-called class I representations of SU(m/n)  
(Balantekin and Bars 1981a). 

2. The Casimir invariants of S U ( m l n )  and the csco-I of graded permutation group 

Let 

(PA = (;I)> 
where A = a (Latin indices) = 1,2,  . . . , m denote the bosonic or commuting wavefunc- 
tions with grade ( A )  = 0, and A =CY (Greek indices) = m + 1 ,  . . . , N = m + n denote 
the fermionic or anticommuting wavefunctions with grade ( A )  = 1. The N 2  
infinitesimal generators of the graded unitary group U(m/n)  are given by 

f 

where 
state A(B),  

The graded Lie algebra of U ( m / n )  is defined by (Jarvis and Green 1979) 

is the creation (annihilation) operator for the al th  particle in the 

e z i q E 2 ’  = s ~ ~ ~ ~ s B C ( P ~ ~ ’ .  (2C 1 

where [:E] is a sign factor. A general definition for the sign factor is 

[A’ = ( - l ) (A,+  +A, ) iB ,+  +B,) 

A,  B, 
where 

with addition modulo 2. Obviously [ A ]  = ( - l ) ( A ) .  

(A1 +.  . . + A , )  = (Ai )  +. . . + ( A , )  

The infinitesimal generators of SU(m/n)  for m # n are given by 

E h  =EAB - (m -n) - laABIBl  ECC 
C 

The N = m + n Casimir invariants of U(m/n)  are expressed as 

= c E,, = f ,  
I 

. . .  
p n  = c El,,,[i23E12,n[i31 * ’ [hE,,,,, 

11 ,k 

(4) 
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where the indices i run from 1 to N. The N - 1 Casimir invariants I;"", k = 
2 , 3 , .  . . , N, of SU(m/n) with m # n are given by the same expressions with  EA^ 
replaced by ELB. IL"/" can be expressed in terms of as 

I ; m / n  = I y n  - ( m  -n)- ' f2.  (7) 

We note that the following relations are useful for sign calculus: 

Ai A I  [; B p ,  [AA1 = [AI, [ A , ] .  . . [Al ] [  i ]  = 1. 
Bl A, AI 

The graded permutation group and super (or graded) Young diagram were intro- 
duced by Dondi and Jarvis (1981) and Balantekin and Bars (1981a, b). We reformulate 
the graded permutation group as follows. Let an f-particle product state be denoted 
by 

(9) 

where the superscripts are the coordinate indices. The transposition (If)" of the graded 
permutation group s( f )  is defined by 

(1f)"IAiAz.. . A ~ ) = ( P A ~ ( P A ~ .  .  PA^ 

1 2  f - i l l +  i 2 V  
IAiAz.. .A f )=cp~,cp~~.  . - V A , - ~ A ~  [ A ,  - 6%;tlo)j 

f 2  1 

A 
= [ A l  A 2 ] b f  ; 2  ] ,Af,  , . . .  Af-,A1). (10) 

The transposition (ij)" of s(f) can be similarly defined. It is clear that the graded 
permutation group S(f) is isomorphic to the ordinary permutation group S(f). The 
space formed by 

Af Af-i 

BIAiAz.. .Af), d E Qf), (11) 
is referred to as the product state space L. 

Using the technique similar to the one used in the ordinary unitary group (Partensky 
1972a, b), and the sign calculus formula (81, we can establish the following relations 
(i)-(iv) in the space L. 

0) E" le11 ' a " [ j ~ e i ~ f '  = (akal)o. (12) 
11 

Let us first prove it is true when acting on the state cp2,~p2~\:. 
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Next we show that (12) is true for any state in L. We may assume k < 1 without loss 
of generality. 

We first prove it holds for the state 

By shifting firstly the operator 
in front of q2k--11,. . . , we have 

to the position in front of q2k, and secondly e:,,"*;/: 
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where the subscript s indicates a symmetrisation in the indices U I  . I . akr and c { k ) ( k )  
is the k-cycle class operator of s ( k ) .  

(16b) 

where e ' ( k ) i f j  is the k-cycle class operator of S(f), g ( k )  the number of elements in the 
class, and C(k)(f)/g(k) the so-called average class operator. Equation (16) is a generali- 
sation of equations (V.3) and (V.5) in Partensky (1972b). 

Now we turn to the problem of the relation between the Casimir operators of 
S U ( m / n )  and s(f). According to Chen er al (1977a), or Chen and Gao (19821, the 
Casimir operators, or the csco-I (the complete set of commuting operators of the first 
kind), of the permutation group S ( f )  are found to be 

Due to the isomorphism between S(f) and S ( f ) ,  the CSCO-I of s(f) for f s  14 is either c,2,(f) or (C?,2,(f), c,3,(f)). We will show that the Casimir operators of SU(m/n)  
are functions of the csco-I of s ( f ) .  To this end we only need to show that the former 
are functions of the class operators of s ( f ) ,  since any class operator of a finite group 
is a function of the csco-I of the group (Zu 1980). 

In analogy with the derivation in Partensky (1972b1, we can easily obtain the 
following relations: 

Pi =[I,"'" - ( m  -n , f l / [ f ( f -  1)1, 

Pi ={p - 2 ( m  -n)lz"'" + [ ( m  -n)2+l ] f - fZ}/ [ f ( f - l ) ( f  -211. 
(18) 

With (16) and (18), the Casimir invariants of U ( m / n )  can be expressed in terms of 
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the class operators of S(f), 

I?'" =CYEii=f, 

IT'" = 3Cc3,cf)+4(m - n ) C ( z ) ( f ) + [ ( m  - n ) 2 - ~ I f + f 2 .  

Higher-power Casimir invariants can be obtained similarly. In general we have 

I:''' = FY (Cck,(f) ,  . . . , Ci2,(f), m - n ). 

I;'" = 2Ci2)(f) + ( m  - n)f, 
i 

( 1 9 ~ )  

(196) 

When n = 0, (19) reduces to the formula given by Partensky for the Casimir invariants 
of the U ( m )  group. 

The Casimir invariants of S U ( m / n )  can be found from ( 5 )  and (19). Again they 
are functions of the class operators of s( f )  as well as the quantity ( m  - n ) :  

I;"" =PT'"(C(k)(f), . . . , &(2)(f) ,  m - n ) ,  

I;"" =2Clz , ( f )+ (m -n)f-f'/(m - n ) .  

(20a 1 

Equations (19) and (20) imply that the Casimir invariants of U ( m / n )  or S U ( m / n )  
are functions of the csco-I of s( f ) .  Therefore, if a basis vector belongs to the irrep v 
of S(f), it must also belong to the irrep v of S U ( m / n ) ,  and vice versa (Chen et a1 
1977a, b). Consequently we can use the partition or Young diagram to label irreps 
of S U ( m / n )  and s(f). Besides, the eigenvalues of C i k ) ( f )  and C,,)(f) are identical. 
The eigenvalues of C(k)( f )  for k = 2-4 were given by Partensky (1972a) as functions 
of the partition [ v ]  = [ V I V Z .  . .I. For instance 

A k , ] ( f )  =i[f+x i vi(vl-20], 

~ [ $ ( f ) = f [ 2 f  -:f'+x (Y: -31~:  + ; V ?  +31(1 -1 )~~) ] .  
(21) 

I 

By replacing in (19) or (20) by AfLi(f), we get the eigenvalues of U ( m / n )  
or S U ( m / n )  Casimir invariants. For example 

r = E  ~ , ( ~ , - 2 2 [ ) + ( m - n + l ) f - f ~ / ( m - n ) .  (22) 
I;"/" 

Equation (22) is a generalisation of (5.23) in Balantekin and Bars (1981a), which 
was obtained from the character approach with much more labour and is applicable 
only to the totally symmetric case, i.e. [ v ]  = [ f]. 

3. The graded state permutation group 

The discussion about the ordinary state permutation group (Chen et a1 1977b, Chen 
and Gao 1982) can be carried over to the graded state permutation group p(f) defined 
below. 

3.1. The case for f particles occupying f distinct single particle ( S P )  states A 1, A Z ,  . . . , A f  

We first specify the ordering of the SP states as A < A 2  < . . . < Af,  and call the product 
state 

(23) lw)  = / A  1A2 . . . A f )  
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the normal order state. Similar to (lo), we define a graded state permutation (A,AI)" 
by 
(A,Ai)"IA,. . . A,A,.  . . AkAi.. . A4)  

- - [Az A][.; A']]Ap., . AlA,. . .AkAi. .  . Aq). (24) 
Ai Ak 

The f -  1 transpositions (AiAz+l)O, i = 1,2 ,  . . , , f - 1, generate the graded state permu- 
tation group p( f), Obviously the graded permutation groups in coordinate indices 
and in state indices are isomorphic and commutative (i.e. any element of s ( f )  commutes 
with any element of p(f)) .  In analogy with the ordinary case (Chen and Gao 1982), 
it can be readily shown that the csco-I of S ( f )  and p ( f )  are equal; however, the 
csco-I of the subgroups $(r) (E S(f)) and P(f') (E p( f ) )  are not. Let &(f') and @(f') 
be the csco-I of S(f') and .iP(f'), respectively. The set of commuting operators 

(25) M = (m, &)), a s ,  = Caf- 11,. * . , &2)), 

is called the csco-II of S ( f ) ,  while 

K = (CUI, &(SI, @(SI), @(SI = (@(f- l), . . . , %(2)), (26) 

is called the csco-111 of S(f). The eigenvectors of K are the Tamanouchi bases of 
S ( f )  andp( f ) ,  i.e. irreducible bases in the classification scheme of S ( f )  3 s ( f  - 1) 3 .  . . =) 

3(2) and g ( f )  x g ( f -  1) 2. . . 2 9 ( 2 ) ,  and can be designated by I ?:I, W',y'), where 
?[,.I and Wk'] are called the graded Young tableaux and graded Weyl tableaux, 
respectively. Thus 

where v, m and k are eigenvalues of &(f), e(,) and @(s).  There is a one-to-one 
correspondence between (v, m )  or (v, k )  and the Yamanouchi symbols (Chen and 
Gao 1982). 

For the case without grading, (27) reduces to 

where Y k l  and W t '  are the ordinary Young tableaux and Weyl tableaux, and 
lY',yl, Wk]) are the Yamanouchi bases of S(f) and Y( f ) .  

It is clear that the transformation of /?[,.I, $PI) under the graded permutation 
group g(f)(p(f)) is exactly the same as IYk], Wk])  under the permutation group 
S ( f ) ( Y ( f ) ) .  We know that the basis vector I Ykl, Wk])  can be expressed as 

= c ~ V m k J l ~  ... f l  IAlSA2, ' * . Af,), (29) 

where & I k  is the normalised projection operator, D z i  the Yamanouchi matrix 

1' ...f 
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elements, h ,  the dimension of the irrep [v] of S ( f ) ,  and &,,k,(l ' , , , f)  with i ' = p ( i )  the 
expansion coefficients. Similarly for the basis vector I 8[,y1, @PI) we have 

= ~ v m k , i l ' . , , f ' ~  n [A~,A~,IIAI,A*, * . . Ay). (30) 

Comparing (29) with (30), it is seen that the basis vector I 8',y1, W P ] )  can be obtained 
from ~ Yk',  WP')  by the substitution 

l ' . . , f '  i < j  
A ,  >A, 

IA1*A2,. . . A',)-* n [A,*Aj,]lA1,A2,. . .Ay) .  
i < j  

A,  >A,. 

For example, from table V in Chen and Gao (1982), we have the Yamanouchi bases 
of g(3) and p(3) listed in table 1. 

For instance 

which is symmetric (antisymmetric) under the graded coordinate (state) permutation 
(12I0((AB 1'). 

It also follows from (29) and (30) that if the f SP states are all bosonic, then 

,P:, W i ) = I Y k ,  WL), ( 3 1 ~ )  

and if they are all fermionic, then 

(316)  

where .I: are the phase factors (Hamermesh 1962), ?:,(+L) the conjugation (inter- 
change rows with columns) of the Young (Weyl) tableau Y :  ( W i  ), and the upper 
equation on the right of (316)  refers to the Young-Yamanouchi phase convention 
which will be used henceforth, while the lower one refers to the Jahn phase convention. 
For example with the Young-Yamanouchi phase convention 

'l;llL! F:,, +.i.;;) 
I P;, @.i.;;) 

under Young-Yamanouchi's PC, 

under Jahn's PC, 
IPC, W.i.;;)=[ 

3.2. The case for f particles occupying N < f SP states 

Suppose we have a configuration (l)j1(2)j2. . . (N)'", with 1,2 ,  . , . , m referring to 
boson SP states, and m + 1,.  . . , N referring to fermion SP states, f = X.;"=I fl. The N 
SP states are assigned to the f state indices A 1  . . . A' in the following manner: 

A I = A > = .  . . = A f , = l ,  A f , + l = . .  .=Af ,+ f2=2 ,  

. . .Aj-fh-+l=. . . = A , = N .  ( 3 2 ~ )  
Once this is done, we can again use (24) as the definition for the graded state 
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-la 
-7 
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p 

3” 
I 

3” 
I 

3” 

I - 
I 

m 
I 
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permutation group g(f). Again, all the results involving the ordinary unitary group 
and the state permutation group (Chen et a1 1977b, Chen and Gao 1982) can be 
transferred to the graded unitary group SU(m/n ) and the graded state permutation 
group s(f). These results are summarised as follows. 

(a). Whenever there are repeated SP states in the product state, a single permutation 
operator of g(f) ceases to have a definite meaning; only the class operators of the 
following subgroups 

g ( f )  g( f - fN)  g(f-fN - fN-l)  * * g(f1 +f2) g(f1) 
remain meaningful, namely the result of applying these class operators on a product 
state is the same irrespective of which one among the f l  identical SP states, ‘1’ being 
regarded as A 1 ,  or A 2 , ,  , . or Af,, and which one among the f 2  identical SP states, ‘2’ 
being regarded as Af,+l,  . . . or Af,+f,, etc. Let 

(32b) p(s’) = ( P ‘ c f - f N )  = . . g(fl +f2) =) g‘cfl)) 
and we refer to g(f) xL?(s’) as the broken chain of g(f) .  Therefore the csco 

(@U); @(s” = (@(f); @(f-fd, . . . , @(f l  +f2), @ ( f l ) )  (33) 

(b). The simultaneous eigenvectors of (@(f); @(s’)) are called the quasi-standard 
of the broken chain have a definite meaning, @ ( i )  being the csco-I of g(i). 

basis of g(f), and can be labelled by the graded Weyl tableaux W :  

The simultaneous eigenvectors of &(f) (= @(f)), &(s) and @(s’) are the Yamanouchi 
basis of S(f) and quasi-standard basis of &f): 

(c). In analogy with (30), I?;, L&’:) can be expressed in terms of the projection 
operator acting on the normal order state: 

j P;, W : )  = [12[”1k(W)]-1BjnYlk/w) = [ P l k ( o J ) ] - l l  ?;Wi)ass (36) 

where @ [ ” I k  ( w )  is a renormalisation constant, and the subscript ‘ass’ means assimilation 
(i.e. letting some SP states in the Yamanouchi basis of g(f) be equal). We note that 
K is the set of eigenvalues of the operators @ ( f - f ~ ) ,  . . . , @ ( f 1  +f2), @(fl), while k is 
that of the operators @ ( f -  l ) ,  @(f-2) ,  . . . , @(2).  K can be obtained from k by 
deleting the eigenvalues of the meaningless operators in the set @(s). Therefore it 
may be that several k correspond to the same K .  The absolute value of the norm 
drY1k  (w ) can be evaluated by the following formula: 

I R [ ” I k ( w ) I  = ( ( W ~ ( B ~ ~ ~ ) ~ B . [ ~ Y ] ~ / W ) ) ~ ’ ~  = [(f!/hy)1/2(~/BCkv1klw)]1’2 

The prime means that the summation is restricted to those p which satisfy p”lw) = * ] U ) .  
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Equation (36 )  shows that the quasi-standard basis of p(f) can be obtained from 
the Yamanouchi basis of g( f )  through assimilation and renormalisation. 

Let us now address the question of the sign of the norm gr"lk(o).  For clarity, we 
will ignore the Young tableau and focus our attention on the Weyl tableau. Equation 
(36)  reads 

B [ " I k 1 W )  =d["lk(u) j  WZ). (38) 

Suppose that in the normal order state lo), the particles i and i + 1 occupy the same 
SP state Ai.  Consequently 

( i ,  i + 1)O1w) = [ A i ] / o ) .  (39)  

It is readily seen that if the Young tableaux Y i  and Y i t  are related by an interchange 
of the positions of i and i + 1 ,  

Yic = ( i , z + l ) Y i ,  (40)  

then k and k' will correspond to the same K .  Using the property of the projection 
operator (Chen and Gao 1982) 

we get 

f i r Y 1 k l ~ )  =prY1k[Ai] ( i ,  i + 1)"Io) =c [Ai]D[k"klf(i, i + l ) p [ " l k ' l ~ > .  ( 4 1 b )  
k '  

Therefore 

plW) = [ g [ Y l k ( W ) / @ [ y l k ' ( ~ ) ~ [ Y l k ' ~ o ) ,  ( 4 2 ~ )  
@ r Y 1 k ( ~ ) / d [ Y 1 k ' ( ~ )  = [Ai]D5rk],(i, i + 1 ) / { 1  -[Ai]D[k"kl(i, i + 1 ) ) .  ( 4 2 b )  

The denominator in (42b)  is always positive, and the off-diagonal matrix element 
Dk$(i, i + 1 )  is also positive under the Young-Yamanouchi phase convention. The 
relative sign between & [ " l k ( ~ )  and f i r Y 7 k ' ( w )  is thus decided by [Ai] .  For the case 
without grading, the norms Rr"lk (o )  are all positive, 

The above consideration can be extended to the more general case. For instance, 
if in Io) we have Ai- l  = A i  = A i + l ,  and Yk,. = ( i  - 1 ,  i )  Yk', Yk, = ( i ,  i + 1 )  Yk, then the 
quantum numbers k, k' and k" correspond to the same K .  We can use (426)  to decide 
the relative sign between l?r"lk"(~) and k[ulk'(u),  as well as that between dr"Ik'(o) 
and &["Ik(o). 

Actually the sign of d["Ik(o) can be fixed by the following simple procedure. We 
choose the norm @ ' " I k  ( U )  with the maximum possible Yamanouchi number k compat- 
ible with the quantum number K being positive. Suppose k and k' correspond to the 
same K ,  and Yk' = 4 Yk. q is necessarily of the form: q = q'q'', q' E S(fl)O. . . OS(f,,,), 
q " E S ( f , , , ~ ) @ . .  . O S ( f w ) .  Then the sign of g r Y 1 k ( ~ )  is given by S,,,, i.e. 

where 6,). is the parity of the permutation 4". 
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When all SP states are bosonic or fermionic, the norm becomes 

(w 1 for fermions, 

where R ‘ ” I k ’ ( u )  is the norm for the ordinary permutation group. 
From (43) it is seen that d r ” ’ k ( ~ )  has the property that when i, # i,,l # . . . # i,, 

(44b 1 2[v1k(iliZ . . . inin+l . , , i,j =d[ ’”k ’  ( i l i 2 .  . . i ,),  

where the quantum numbers [Y’] and k ’  are determined in the following way. If 
R ‘ ” ’ k ( ~ )  is regarded as a function of the graded Young tableau pc and the Weyl 
tableau of 1381, i.e. 

l ? i i ’ k ( W j  =R($’i, W i ) ,  

then [Y’] is decided by dropping the boxes filled with the indices i n , l . .  . i ,  in the 
tableau W : ,  while k ’  is decided by dropping the corresponding boxes in the tableau 
Y i .  For example 

Some examples of the norm are given in table 2. 
According to tables 1 and 2,  as well as (36), we obtain the quasi-standard bases 

for a three-particle system shown in table 3. 
From (31) it is clear that the rules for writing a graded Young tableau and the 

ordinary one are the same, while those for a graded Weyl tableau and the ordinary 
Weyl tableau differ only in one respect, namely for a graded Weyl tableau, besides 
the requirement that no two identical boson states are allowed to occupy the same 
column, no two fermion states are allowed to occupy the same row, of a Young 
diagram. For instance 

4. The Gel’fand basis of S U ( m l n )  

Dondi and Jarvis (1981) and Balantekin and Bars (1981a, b) used the extension of 
the Young operator technique to construct the irreducible basis of SU(m/n) .  The 
disadvantage of the basis thus obtained is that it is not an orthogonal basis. We can 
extend the definition for the Gel’fand basis of SU(m) to S U ( m / n ) ;  namely, a Gel’fand 
basis of SU(m/n)  is defined as the basis which is a simultaneous eigenvector of the 
Casimir invariants of the groups SU(m/n)  2 SU(m/n - 1) 2 .  . . SU(m) 2 .  . . SU(2) 3 

U(1). This basis is obviously orthogonal. 
It is known that the Gel’fand basis of SU(m) can be constructed by applying the 

projection operator of the permutation group to the normal order state (Lezuo 1972, 
Patterson and Harter 1976, Sarma and Sahasrabudhe 1980). On the other hand, it 
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Table 3. The Yamanouchi basis of 5 ( 3 )  and the quasi-standard basis of &3). 

1 

-1 2 -1 

-1 

0 1 1 

2 1 - 

1 -1 

1 1 1 

1 1 

1 -1 1 

X is the total normalisation constant. {A}, = i(l * [ A ] ) .  

has been proved that the quasi-standard basis of the permutation group is just the 
Gel'fand basis of the unitary group (Chen et a1 1977b). Now we are going to show 
that the quasi-standard basis of the graded state permutation group g( f )  is the Gel'fand 
basis of the graded unitary group SU(m/n). The extension from the ordinary case to 
the graded one is straightforward. So we skip the proof and simply quote the results. 

(a) In analogy with (16b), we first define the operator 

Acting on any product state / w i )  = p i / w ) ,  p i  E S(f), the operator Pif-fN' is equivalent 
to the average k-cycle class operator of the graded state permutation group Y( f - f N )  

(b) The Casimir operators ILm'"-' of SU(m/n - 1) are functions of the csco-I of 
g(f -fN): 

(@(f -fN))* (47a 1 i m / n - 1  - p ; l n - l  - Ik 
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Similarly we have 

On the basis of (34), (47) and (ZO), we know that the quasi-standard basis of p(  f )  
can be identified with the Gel’fand basis of SU(m/n) .  Therefore we can use the 
graded Weyl tableau to label the S U ( m / n )  Gel’fand basis, and the dimension of an 
irrep [ V I  of SU(m/n j is equal to the total number of the possible graded Weyl tableaux 
belonging to the same Young diagram [VI. A graded Weyl tableau results from filling 
a Young diagram with N = m + n  SP states subject to the following rules. (1) The 
state indices must be in non-decreasing order from left to right in each row and from 
top to bottom in each column. (2) No two bosonic (fermionic) states are permitted 
to sit in the same column (row). For example, the irrep [21] of the SU(2/3) group is 
of dimension 40 with the following graded Weyl tableaux. 

3 bosons: 
aa ab 
b b  

2 bosons , aa aa aa ab aa ab ap  ab ay  bb bb bb 
1 fermion ‘ a P r a b P b v b a P r  
1 boson . aa aa ap aa ay  up ap ay  ay  
2 fermions’ a P a r a P r B y  

ba ba bp ba by  bp bp by  by 
f f P f f Y a P Y P Y  

aP .P aY  PY a y  PY 3 fermions: 
a a P Y P P Y Y  

The explicit expressions for the above SU(2/3 j Gel’fand basis vectors can be read 
out from table 1 or table 3. 

5. Summary 

The study presented in this paper shows that it is very easy to treat the representation 
problem U ( m / n )  in terms of the graded permutation group. With some slight 
modifications, we can take over all the results obtained in the representation theory 
of the unitary and permutation groups. In table 4 we indicate the necessary 
modifications for transferring the results concerning the groups U(m + n ) ,  S (  f )  and 

Table 4. The ordinary versus the graded groups. 

Casimir invariants Zp*” =Fk(C(f), m + n )  IF’“ =F,(t(f), m - n )  
Special Gel’fand basis 
General Gel’fand basis 

j YL,  w;) = & I k  Iw) I?&, te’;)=8“‘lw) 
I Y k ,  w:) = [Rr”lk(w)l-’l  YLWE )- I ?&, ~ L )  = [R[”lk(w)]-’IBLte;),s, 
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Y ( f )  to the case of U ( m / n ) ,  s(f) and g(f). For example, if I;+'' =Fk(C(f), m + n )  
is the formula for the Casimir invariant of U ( m  + n )  as a function of the csco-I of 
S(f) and the quantity ( m  + n ) ,  then by replacing the csco-I of S(f) with that of S(f), 
and the quantity (m + n )  with (m  - n ) ,  we immediately get the formula for the Casimir 
invariants ~r" '  of ~ ( m / n ) .  

Once the Gel'fand basis of SU(m/n)  is identified with the quasi-standard basis of 
the graded state permutation group 9(f), the other seemingly more formidable 
problems, such as the Clebsch-Gordan coefficients, isoscalar factors etc of the group 
SU(m/n)  can be solved easily from the permutation group representation. The matrix 
elements of the infinitesimal operators in the Gel'fand basis, the Clebsch-Gordan 
coefficients of SU(m/n) ,  the isoscalar factors for the group chains SU(mp + nq/mq + 
np) 3 SU(m/n)  x SU(p/q) ,  SU(m +p/n  + q )  3 SU(m/n)  x SU(p/q), and SU(m/n)  3 

SU(m)  x SU(n) ,  etc will be investigated in the forthcoming papers. 

Note added in proof. The same conclusion is obtained by A B Balantekin 1982 J. Math. Phys. 23 486. 
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