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Abstraet. In the space of f-particle product states, the Casimir invariants of the graded
unitary group SU(m/n) are functions of the class operators of the graded coordinate
permutation group §(f), which are equal to the class operators of the graded state
permutation group §’(f). Formulae for the quadratic and cubic Casimir invariants are
given. Itisshown that in general the eigenvalue formulae for the U(m/n) Casimir invariants
as functions of the partition can be obtained from those for U(m +n) by simply changing
the argument of the functions from (m +n) to (m —n). The quasi-standard basis of g’(f)
is identified with the Gel'fand basis of SU{(m/n), i.e. the irreducible basis classified
according to the group chain SU(m/n)>2SUm/n—-1)>...SU(m)>...SUR)=>U(1).
The special Gel'fand basis of SU(m/n) (for which the weight is restricted to (1, 1, ..., 1))
can be easily obtained from the Gel'fand basis of SU(m +n) with due allowances for
modifying sign factors arising from the grading. The construction of a general SU(m/n)
Gel'fand basis is also discussed.

1. Introduction

The graded unitary group SU(m/n) is of interest both in particle physics (Ne'eman
1979, Dondi and Jarvis 1979, 1980, Taylor 1979), where an internal superalgebra is
introduced as a gauge symmetry, and in nuclear physics (Iachello 1980, Balantekin
et al 1981a, b, Sun and Han 1982a, b), where SU(6/4) is used as a supersymmetry
group in nuclei. Several examples of the SU(6/4) supersymmetry in nuclei have been
found (Iachello 1980, 1982).

The group SU(m/n) has been studied by Dondi and Jarvis (1981), Han et al
(1981), Sun and Han (1981, 1982a, b), and Balantekin and Bars (1981a, b). However,
up to now these studies mainly concentrated on the irreducible representations (irreps),
characters, Kronecker product reductions and branching rules. The other important
issues such as the Clebsch-Gordan coefficients and isoscalar factors have not yet been
touched upon. Aswe know, the problem of evaluating the Clebsch—-Gordan coefficients
and various kinds of isoscalar factors of the ordinary unitary group can be conveniently
tackled from the permutation group representation theory (Chen et a/ 1978a, b, Chen
1981). The appealing feature of this approach is that the results obtained are indepen-
dent of the rank of the particular group under consideration. In a series of papers,
the present being the first, we will extend this approach to the graded unitary group
and show that the relation between the unitary group and the permutation group is
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exactly the same as that between the graded unitary group and the graded permutation
group. A brief account of the subject has been published (Chen et al 1983).

In § 2 we prove that the Casimir operators of SU(m/n) are functions of the class
operators of the graded permutation group. The graded state permutation group )
is introduced in § 3, and the quasi-standard basis of j’(f) is identified with the SU(m/n)
Gel'fand basis in § 4. Finally in § 5 we discuss the construction of the Gel’fand basis
of SU(m/n).

In this paper we only treat the so-called class I representations of SU(m/n)
(Balantekin and Bars 1981a).

2. The Casimir invariants of SU(m/n) and the csco-1 of graded permutation group

Let

LA = <:>;:>9 (1)
where A = a (Latinindices) = 1, 2, . . ., m denote the bosonic or commuting wavefunc-
tions with grade (A)=0, and A =a (Greek indices)=m +1,..., N =m +n denote

the fermionic or anticommuting wavefunctions with grade (A)=1. The N?
infinitesimal generators of the graded unitary group U(m/n) are given by

f :
Eas= Y eLp, elsy =£TES, (2a, b)
ay=1

where ¢5V7(£57) is the creation (annihilation) operator for the a;th particle in the
state A(B),

eXbeE? =8a,0,08c0 X" (2¢)
The graded Lie algebra of U(m/n) is defined by (Jarvis and Green 1979)
[Eas, Ecp] _ [gg] =8pcEap — [2§J5ADECB, (3)
where [35] is a sign factor. A general definition for the sign factor is
Ay By
: Dl (_1)(A1+.4.+Al)(B,+...+B,), (4)
A, B,

where
(Aj+...+A)=(AD+.. . +(A)

with addition modulo 2. Obviously [A]=(—1)"*".
The infinitesimal generators of SU{m/n) for m # n are given by

E:AB =Eag—(m —'1)45,413[3] ECZ Ecc. (5)

The N =m +n Casimir invariants of U{m/n) are expressed as
I'ln/n =Z E; =f,

e (6)
I,'("/" = Z Ei,[1)ELulis] . . [ix )i,

fpodk
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where the indices { run from 1 to N. The N —1 Casimir invariants I,"", k =

2,3,..., N, of SU(m/n) with m #n are given by the same expressions with Eap
replaced by Els. I™" can be expressed in terms of 157", as
I =15 —(m=n)"'f". )
We note that the following relations are useful for sign calculus:
TA ¢ A AD c c
B D= B C BEl™ A D||B Dj| (8)
. E E E
4 B A, A
P =1, [AA]=[A], [A].. . [A] =L
L B; A A

The graded permutation group and super (or graded) Young diagram were intro-
duced by Dondi and Jarvis (1981) and Balantekin and Bars (1981a, b). We reformulate

the graded permutation group as follows. Let an f-particle product state be denoted
by

AIA,. . Ap=0heh,. ..ok =¢aTed) . eL0), 9)

where the superscripts are the coordinate indices. The transposition (1f)° of the graded
permutation group S(f) is defined by

(lf)°|A1A2 o 'Af>=¢£§1¢1242 v @Lf

A, As
= A1 : Af : lAfAz e Af_lA 1). (10)
Af Af_l

The transposition (if)° of $(f) can be similarly defined. It is clear that the graded

permutation group S(f) is isomorphic to the ordinary permutation group S(f). The
space formed by

BlAA, .. Ap), S, (11)

is referred to as the product state space L.

Using the technique similar to the one used in the ordinary unitary group (Partensky

1972a, b), and the sign calculus formula (8), we can establish the following relations
(i)-(iv) in the space L.

. N ¢ ,
(i) e [flei = (awar). (12)
1y
Let us first prove it is true when acting on the state ¢ & ¢ %.,.

N ¢ .
Yrei [flei (0 Xed)
if
Np. J
=, [J][Ax I.](eif“<pii‘t)e}f‘”qoi§"z)
if

A a a a a a a
=[A1][A1 A:]mgml)=[A1A2](¢Ag<p4,>=<aka,)°¢m42. (13a)
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Next we show that (12) is true for any state in L. We may assume k <[ without loss
of generality.

N
e e (ef . oX .. 04 ... 0X)

if

. Al ]" Al
4 ¢ ' M a a a a) a a
=i P (%, .. e ek . . e o4 ... 0%)
Ay Ay
A A
A[ '1 Ak '1 a a a a
=[A1<]A : A, (@A, .. @& @A, ... 04)
k
Ap-t A
Ak+1 Ak
=|Ac AL R e el 0d)
Al—~1 Al*l
=(aka)’(@a, ... @& ... @A ... ¢X). (13b)
(i) Nennlioles . lideit = (@as. .. au). (14)

Iy
We first prove it holds for the state

= (%1 p%2 ap
b=pXoa, ... 0L,

By shifting ﬁrstly the operator e,k,1 to the position in front of ¢ &, and secondly e(,k“ 1,‘,‘)

in front of (pAk '». .., we have

N (ap TR
Cey i 2]e,213 . .[zk]e,-:,»*1 b

. A
. , 12 l . a)) a, (a,) a a a,
- ilz:[lz:] o [lk][i3 Al] Y l',: : eilfz)‘FA\eEziaJ(pAzz . 'ei'kikl)‘pAk
Ak—l
A,y
=[A]...[Ax_ [ A ]
[A1].. . [Ax-i] 4, 4
A
AZ Al Ak—l '1 a, a, a;
X A, A A, oAkl oA )
Ak*l
A,
= Ay : (‘PaAlk¢221'"¢f\kk~1)=<a1a2-"ak>o(b' (15a)
Ar

Similarly, for a general state

_ 1 a a a f
V=0a,...0a0, . @& . 0da ... ¢a,



Casimir invariants and Gel’fand basis of SU (m/n) 1365

we have
‘Zf]eifi‘;[iz]ei:g coelide f»:,-"l)‘lf
A A A
Aay 2| Aay ! Adi !
=[Aa,].. . [Aac 1] Ag : Ag : | Ag :
' Ag, -1 > Aa,-1 *  Ag,—1
X (@ @S Gy Py @)
Aa,+17][ Aa,+1 Aag_1+1 Aa,
= Aa1 Aa2 Aak41 Aak
Aa>—1 Aas—1 Aag, -1 Aa; -1
><(<p1h-.-cpﬁ\‘ak-.-qoizal---cpaA“ak,l--.qcfa,)
=(aias...ag)V. (1556)

(ii1) From (14) we obtain

N

la,..a,) 1 alr., (¥ P! . a 2
P =2 X et liders . lidens)s= Culk)/tk —=1)! (16a)

where the subscript s indicates a symmetrisation in the indices a; . .. a, and Curk)
is the k-cycle class operator of S(k).
-1

(1v) P£ E(I{) . <Z({a Plkalma“’ =é[k»(f)/g[k1, g<k1=<£)(k—1)!,
(165)

where ékj(f) is the k-cycle class operator of §(f), gk, the number of elements in the
class, and C,(f)/g«, the so-called average class operator. Equation (16) is a generali-
sation of equations (V.3) and (V.5) in Partensky (1972b).

Now we turn to the problem of the relation between the Casimir operators of
SU(m/n) and $(f). According to Chen er al (1977a), or Chen and Gao (1982), the
Casimir operators, or the csco-1 (the complete set of commuting operators of the first
kind), of the permutation group S(f) are found to be

C =Cuf) for2<f<S5,f=17,

(17)
C =(Cy(f), Calf) forf=6,8<f=<14.

Due to the isomorphism between S(f) and §(f), the csco-1 of §(f) for f =< 14 is either
Co(f) or (Cio(f), C3(f)). We will show that the Casimir operators of SU(m/n)
are functions of the csco-1 of §(f). To this end we only need to show that the former
are functions of the class operators of $(f), since any class operator of a finite group
is a function of the csco-1 of the group (Zu 1980).

In analogy with the derivation in Partensky (1972b), we can easily obtain the
following relations:

PL=[I3"" —(m—n)f)/[f(f-1)],
Py ={I7" =2(m ~m)I3" +[(m—n)+1]f = f3/F(f-1)(f-2)].

With (16) and (18), the Casimir invariants of U(m/n) can be expressed in terms of

(18)



1366 J-Q Chen, X-G Chen and M-J Gao
the class operators of S(f),

P =YVE=f, 17" =2Ca(N+m-nf,

’ (19a)
177" =3Cs (N +am —n)Col(f)+[m —n = 11f +£°.

Higher-power Casimir invariants can be obtained similarly. In general we have

I =F (Caf)y ..o, Caff)ym—n). (19b)

When n =0, (19) reduces to the formula given by Partensky for the Casimir invariants
of the U(m) group.

The Casimir invariants of SU(m/n) can be found from (5) and (19). Again they
are functions of the class operators of §(f) as well as the quantity (m —n):

L =FE (ol f .o Calf)m=n), (20a)
15" =28 () +m =n)f £/ (m = n). (206)

Equations (19) and (20) imply that the Casimir invariants of U(m/n) or SU(m/n)
are functions of the csco-1 of S(f). Therefore, if a basis vector belongs to the irrep v
of §(f), it must also belong to the irrep v of SU(m/n), and vice versa (Chen et al
1977a,b). Consequently we can use the partition or Young diagram to label irreps
of SU(m/n) and §(f). Besides, the eigenvalues of C,(f) and Cu(f) are identical.
The eigenvalues of Cy,(f) for k =2 —4 were given by Partensky (1972a) as functions
of the partition {v]=[v,v,...]. For instance

AL (p) = %[f+Z[ win=20)|,
(21)
AL =%[2f—%f2+2 Wi =3Wi+3i+3101- 1):«)].
I

By replacing Cii(f) in (19) or (20) by AlL}(f), we get the eigenvalues of U(m/n)
or SU(m/n) Casimir invariants. For example
15" =Y v =20+ m—n+)f=f2/(m —n). (22)
!
Equation (22) is a generalisation of (5.23) in Balantekin and Bars (1981a), which

was obtained from the character approach with much more labour and is applicable
only to the totally symmetric case, i.e. [v]=[f].

3. The graded state permutation group

The discussion about the ordinary state permutation group (Chen et al 1977b, Chen

and Gao 1982) can be carried over to the graded state permutation group t?(f) defined
below.

3.1. The case for f particles occupying f distinct single particle (sp) states A;, A, . . . LAf

We first specify the ordering of the spstatesas A; <A, <. ..< Ay, and call the product
state

!w)=lA1A2...Af) (23)
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the normal order state. Similar to (10), we define a graded state permutation (A;A;)°
by

(AAIA,...AA,.. . AA ... A,)
A, A,
=|A, A A, . AAL . AA .. A, (24)
A1 Ak

The f —1 transpositions (AA;.1)%, i =1,2, ..., f—1, generate the graded state permu-
tation group F(f). Obviously the graded permutation groups in coordinate indices
and in state indices are isomorphic and commutative (i.e. any element of §( f) commutes
with any element of j’(f)) In analogy with the ordmary case (Chen and Gao 1982),
it can be readily shown that the csco- of §(f) and &(f) are equal; however, the
csco-1 of the subgroups S(f e $(f) and #(fF)) (e #(f)) are not. Let C(f') and A0
be the csco-1 of $(f') and #( [, respectively. The set of commuting operators

M =(C(f), Cis)), Cis)=(C(f-1),...,CQ), (25)
is called the csco-11 of §(f), while
K =(C(f), C(s), €(s)), €s)=(€(f~1),...,%(2), (26)

is called the csco-mr of $() /). The eigenvectors of K are the Yamanouchi bases of
S(f) and9’ f),1 e.irreducible bases in the classification scheme ofS f)DS(f 1

§(2) and SP(f :39’ (f—-1)>.. .2 #(2), and can be designated by IY(,Z), W, where
Y and W¥? are called the graded Young tableaux and graded Weyl tableaux,
respectively. Thus

C(f)

14
CONY, wily={m||lYh, wih, 27
€(s) k

where v, m and k are eigenvalues of é(f), é(s) and qé(s)_ There is a one-to-one
correspondence between (v, m) or (v, k) and the Yamanouchi symbols (Chen and
Gao 1982).

For the case without grading, (27) reduces to

'C(f) %
C) || YW, witly = m|lYh, wiy, (28)
LB (s), k|

where Y! and W' are the ordinary Young tableaux and Weyl tableaux, and
Y™, W["]> are the Yamanouchi bases of S(f) and &(f).
It is clear that the transformation of fY[,Z], Wil under the graded permutation
group S(HP(F)) is exactly the same as |Y[,:], W' under the permutation group
S(AHFL(). We know that the basis vector }Y[,,‘.’}, W) can be expressed as
1/

YW =P =(2) ZD[” p)plw)
= Z’uvmk.ll’...f’)‘Al’AZ’---Af'>, (29)

where P2 is the normalised projection operator, D'} the Yamanouchi matrix
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elements, 4, the dimension of the irrep [v] of S(f), a‘pd Upmi, 1.y With i'=p(i) the
expansion coefficients. Similarly for the basis vector [Pl Wil we have

1/2
PR =B o) =(F) SRl
: P

= Z / Upmk,1'..f) H [Ai'A;"]|A1'A2' e -Af’>- (30)
1..f Alx’:{AI‘
Comparing (29) with (30), it is seen that the basis vector !f’f,:], W1y can be obtained
from | YT, W) by the substitution
‘Al'Azf PN Af)") H [A,"A//:“A 1'A2' PN Af‘>.
<y

AL‘>£A,r
For example, from table V in Chen and Gao (1982), we have the Yamanouchi bases
of S(3) and &(3) listed in table 1.

For instance

W

] ’;Cl>=—%([A g][BC]\CBA>—[BC]lACB>

—[C 2]\CAB>+[A g]LBCA>)

which is symmetric (antisymmetric) under the graded coordinate (state) permutation
(12)°((AB)°).
It also follows from (29) and (30) that if the f sp states are all bosonic, then

Yo, Wo=1Yn, W, (31a)
and if they are all fermionic, then

ALALY L, WO under Young-Yamanouchi’s pc,

f}r"’ WV :{ & v
| < Y., Wi under Jahn's pc,

(3154)
where A, are the phase factors (Hamermesh 1962), Y% (W}) the conjugation (inter-
change rows with columns) of the Young (Weyl) tableau Y, (W%), and the upper
equation on the right of (314) refers to the Young-Yamanouchi phase convention
which will be used henceforth, while the lower one refers to the Jahn phase convention.
For example with the Young-Yamanouchi phase convention

112] =781\ _1[113][=]+] 2] 10\ (]3] [2]8]

I A | P I VI EN T At | P P A
3.2. The case for f particles occupying N < f Sp states
Suppose we have a configuration (1)f‘(2)f2 ce (N)fN, with 1,2, ..., m referring to
boson sp states, and m +1, ..., N referring to fermion sp states, f=32/_; ., The N
SP states are assigned to the f state indices A; ... A; in the following manner:
A1=A2=...=Af1=1, Af1+1=...=Afl+f2=2,

...AfAf‘vq:...:Af:N. (3261)

Once this is done, we can again use (24) as the definition for the graded state
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permutation group #( f). Again, all the results involving the ordinary unitary group
and the state permutation group (Chen et al 1977b, Chen and Gao 1982) can be
transferred to the graded unitary group SU(m/n) and the graded state permutation
group F(f). These results are summarised as follows.

(a). Whenever there are repeated sp states in the product state, a single permutation
operator of P(f) ceases to have a definite meaning; only the class operators of the
following subgroups

P 2P ~f)2Pf—fn—fu) 2. . 2P (f1+f2) 2 P(f1)

remain meaningful, namely the result of applying these class operators on a product
state is the same irrespective of which one among the f, identical sp states, ‘1’ being

regarded as Ay, or A,, ... or Ay, and which one among the f, identical sp states, ‘2’
being regarded as Ay .1, ... 0r Ay .p, etc. Let
F(s)=(Pf~fn)>. . 2 fi+f2) 2 F(f1) (326)

and we refer to P(f) > #(s') as the broken chain of #(f). Therefore the csco

(), €N =(@U) €(fF—fx)s .- Glf1+12), €(f1) (33)

of the broken chain have a definite meaning,a @(i) Peing the csco-1 of §°(z’).
(b). The simultaneous eigenvectors of (¢(f); €(s')) are called the quasi-standard
basis of §’(f), and can be labelled by the graded Weyl tableaux W},

(fg((sf,)))Ww: (D)o, (34)

The simultaneous eigenvectors of é(f) (i@(f)), é(s) and ‘é(s’) are the Yamanouchi
basis of §(f) and quasi-standard basis of #(f):

ChH) v
Cs) || Yo Wiy={m|| Y, W5 (35)
€(s"): e

(c). In analogy with (30), |Y%, W) can be expressed in terms of the projection
operator acting on the normal order state:

Y5 WO =[R" ()] "B ) = (R (w)]™

Y Wi (36)

where B () is a renormalisation constant, and the subscript ‘ass’ means assimilation
(i.e. letting some sP states in the Yamanouchi basis of §’(f) be equal). We note that
k is the set of eigenvalugs of the operators ‘é(f—fN), Cees (é(ﬂ +1£2), ‘é(fl), while & is
that of the operators €(f—1), €(f-2),..., @(2). k can be obtained from k by
deleting the eigenvalues of the meaningless operators in the set €(s). Therefore it
may be that several k correspond to the same . The absolute value of the norm
R"™¥*(w) can be evaluated by the following formula:

R™ (@) = (| (B B o2 = [(f1/h) e

ﬁ[kv]klw>]l/2
1/2
- (/T DBl (37)

The prime means that the summation is restricted to those p which satisfy flw) = £|w).
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Equation (36) shows that the quasi-standard basis of #(f) can be obtained from
the Yamanouchi basis of & (f) through assimilation and renormalisation.

Let us now address the question of the sign of the norm Ié[”]"(w). For clarity, we
will ignore the Young tableau and focus our attention on the Weyl tableau. Equation
(36) reads

B w)=R"¥(w)

W), (38)

Suppose that in the normal order state |w), the particles / and i + 1 occupy the same
sp state A;. Consequently

(i + 1)) =[AJlw). (39)

It is readily seen that if the Young tableaux Y and Y} are related by an interchange
of the positions of / and i +1,

Ye=0Gi+1)Yy (40)

then & and k’ will correspond to the same «. Using the property of the projection
operator (Chen and Gao 1982)

Pl =§D&"£r(p>ﬁ5:““ (41a)
we get
By = BPH[A0G, i + 1)) =Y [A DY G, i + DBY ¥ |w).  (410)
2

Therefore
BPU¥w)=[R™"*(w)/R"" (@)1 |w), (42a)
R"™(w)/R" ™ (0)=[ADW G, i + /{1 -[AIDY G, i+ 1)} (42b)

The denominator in (424) is always positive, and the off-diagonal matrix element
Dii]r(i,i +1) is also positive under the Young-Yamanouchi phase convention. The
relative sign between R (w) and R¥¥ (w) is thus decided by [A;]. For the case
without grading, the norms R"*(w) are all positive,

The above consideration can be extended to the more general case. For instance,
if in |w) we have A;_;=A;=A;.1, and Ye-=(G—1,{)Ye, Ye=(i,i+1)Y then the
quantum numbers k, kK’ and k" correspond to the same k. We can use (4256) to decide
the relative sign between RY () and R (w), as well as that between Ié[”]k'(w)
and R ¥ (w).

Actually the sign of R"*(w) can be fixed by the following simple procedure. We
choose the norm R™*(w) with the maximum possible Yamanouchi number k compat-
ible with the quantum number « being positive. Suppose & and k' correspond to the
same «, and Y =qYy. g is necessarily of the form: g =q'q", ¢' € S(f1)®...®S(f,.),
q"€S(frm+1)®...®S(fn). Then the sign of R™*(w) is given by &, i.e.

BUW ()= ( ' yv] a0
@) =8g|(w| X' DV (p)Blw) (43)
14

where 8, is the parity of the permutation gq".
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When all sp states are bosonic or fermionic, the norm becomes

1/2
RV (w)= (<wl ) Diyk«p)p!w) : for bosons,
= P

Ié[u]k’(w)_ (44a)

8,R o (@) for fermions,

where R (w) is the norm for the ordinary permutation group.
From (43) it is seen that Iémk(w) has the property that when i, Zi,.1 # ... # im,

RY™ (s ininer oo b ) =R (i o in), (44b)

where the quantum numbers [»'] and k' are determined in the following way. If
R™* () is regarded as a function of the graded Young tableau Y} and the Weyl
tableau W, of (38), i.e.

e

Rk w)=R(Yi, W),

then [v'] is decided by dropping the boxes filled with the indices 7,.1...{. in the
tableau W, while &’ is decided by dropping the corresponding boxes in the tableau
Y ;. For example

é(;2456 gBCDE) =}§<;2 ;\B)

Some examples of the norm are given in table 2.

According to tables 1 and 2, as well as (36), we obtain the quasi-standard bases
for a three-particle system shown in table 3.

From (31) it is clear that the rules for writing a graded Young tableau and the
ordinary one are the same, while those for a graded Weyl tableau and the ordinary
Weyl tableau differ only in one respect, namely for a graded Weyl tableau, besides
the requirement that no two identical boson states are allowed to occupy the same
column, no two fermion states are allowed to occupy the same row, of a Young
diagram. For instance

o o} ]

l ZBJ>=0 , ”]>=0 but

—J

»

5| >¢0.

4. The Gel’fand basis of SU(m/n)

Dondi and Jarvis (1981) and Balantekin and Bars (1981a, b) used the extension of
the Young operator technique to construct the irreducible basis of SU(m/n). The
disadvantage of the basis thus obtained is that it is not an orthogonal basis. We can
extend the definition for the Gel’fand basis of SU(m ) to SU(m/n); namely, a Gel'fand
basis of SU(m/n) is defined as the basis which is a simultaneous eigenvector of the
Casimir invariants of the groups SU(m/n)>SU(m/n-1)>...SUm)>...SU2)>
U(1). This basis is obviously orthogonal.

It is known that the Gel’fand basis of SU(m) can be constructed by applying the
projection operator of the permutation group to the normal order state (Lezuo 1972,
Patterson and Harter 1976, Sarma and Sahasrabudhe 1980). On the other hand, it
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Table 3. The Yamanouchi basis of $(3) and the quasi-standard basis of Z3).
vy we N |AAB) [AB]ABA) |BAA)
VAl 1 1 1
VKAl 2 -1 .
3 (B]
vi{A}. 0 1 -1
'3 viay. 0 1 1
E] ViA} 2 1 -1
NS 1 -1 1
Yy we N IABB) [AB]|BAB) |BBA)
viB). 1 1 1

1/2

(A]E] ! -
L (4+2[3]) ! ! (1+[B]
A[B) LA _ -
o 8 =557) 1 1 (1-B)
1 ~
viB}_ 1 -1 1

N is the total normalisation constant. {4}, =3(1x[A]).

has been proved that the quasi-standard basis of the permutation group is just the

Gel'fand basis of the unitary group (Chen et al 1977b). Now we are going to show

that the quasi-standard basis of the graded state permutation group P(f) is the Gel'fand

basis of the graded unitary group SU(m/n). The extension from the ordinary case to

the graded one is straightforward. So we skip the proof and simply quote the results.
(a) In analogy with (165), we first define the operator

pr ()L 5

. S ennlinleh - lideidy)s (49)

k ' a;<..<ag Tk

Acting on any product state |w;) = p;jw), pi € S(f), the operator P~ is equivalent
to the average k-cycle class operator of the graded state permutation group ¥(f —fn)

PI™lw) = (81) € (f ~ )i, gl = (f—fN)(k -1l (46)

k

m/n—1

(b) The Casimir operators I}

P(f—fn):

of SU(m/n —1) are functions of the csco-1 of

I;(m/n—l =1‘5;n/n—1 ((g(f_fN)) 47a)
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Similarly we have

I;(m/n-'2 =F-"k"/"_2 ((é(f—fN —fN—l))v
= (47b)
I¥? = F (4(fi+ o).

On the basis of (34), (47) and (20), we know that the quasi-standard basis of ()
can be identified with the Gel'fand basis of SU(m/n). Therefore we can use the
graded Weyl tableau to label the SU(m/n) Gel'fand basis, and the dimension of an
irrep [v] of SU(m/n) is equal to the total number of the possible graded Weyl tableaux
belonging to the same Young diagram [v]. A graded Weyl tableau results from filling
a Young diagram with N =m +n sP states subject to the following rules. (1) The
state indices must be in non-decreasing order from left to right in each row and from
top to bottom in each column. (2) No two bosonic (fermionic) states are permitted
to sit in the same column (row). For example, the irrep [21] of the SU(2/3) group is
of dimension 40 with the following graded Weyl tableaux.

b
3 bosons: :a Z
2 bosons aa aa aa ab aa ab aB ab ay bb bb bb
1 fermion a B y a b B b v b a B v
1boson ax aa aB aa ay aB aB ay ay
2 fermions’ a B8 a v a B % B v

ba ba BB ba by bB bB by by
«a B a vy a B v B v

3 fermions: aB ay aof af ay By ay By
a a B vy B B v ¥

The explicit expressions for the above SU(2/3) Gel'fand basis vectors can be read
out from table 1 or table 3.

5. Summary

The study presented in this paper shows that it is very easy to treat the representation
problem U(m/n) in terms of the graded permutation group. With some slight
modifications, we can take over all the results obtained in the representation theory
of the unitary and permutation groups. In table 4 we indicate the necessary
modifications for transferring the results concerning the groups U(m +n), S(f) and

Table 4. The ordinary versus the graded groups.

Um +n), S(f), #(f) Ulm/n), 8(f), Z(f)
Casimir invariants IT™" =F (C(f),m+n) 1 = F (8, m—n)
Special Gel'fand basis Yy, wiy= Py V2, Wy =Bl y)

General Gel'fand basis Yo, Wo =R (@) Y oW V5% W= [RBE()] P W ae
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F(f) to the case of U(m/n), $(f) and #(f). For example, if I7*" = F(C(f), m +n)
is the formula for the Casimir invariant of U(m +n) as a function of the csco-1 of
S(f) and the quantity (m +n), then by replacing the csco-I of S(f) with that of $(f),
and the quantity (m +n) with (m —n), we immediately get the formula for the Casimir
invariants I7'" of U(m/n).

Once the Gel'fand basis of SU(m/n) is identified with the quasi-standard basis of
the graded state permutation group P(f), the other seemingly more formidable
problems, such as the Clebsch—-Gordan coefficients, isoscalar factors etc of the group
SU(m/n) can be solved easily from the permutation group representation. The matrix
elements of the infinitesimal operators in the Gel’'fand basis, the Clebsch—-Gordan
coefficients of SU(m/n), the isoscalar factors for the group chains SU(mp + nq/mgq +
np)>8U(m/n)xSU(p/q), SU(m +p/n+q)>SU(m/n)xSU(p/q), and SU(m/n)>
SU(m)xSU(n), etc will be investigated in the forthcoming papers.

Note added in proof. The same conclusion is obtained by A B Balantekin 1982 J. Math. Phys. 23 486.
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